Работан материал для солнечных панелей с внешней квантовой эффективностью 190 %

На деньги Министерства энергетики США учёные из Лехайского университета (штат Пенсильвания) создали материал для солнечных панелей с невообразимой эффективностью.

Благодаря разработке новые панели смогут вырабатывать до двух электронов на каждый поглощённый высокоэнергетический фотон, что намного выше теоретически предсказанного значения.

Привычное значение КПД панелей и внешняя квантовая эффективность фотоэлектрического материала — это не одно и то же. При падении на панель часть фотонов отражается, а другая часть нагревает панель вместо возбуждения электронов. Тем самым теоретическое значение внешней квантовой эффективности (EQE) не может быть больше 100 %, на что указывает предел Шокли-Квиссера, а КПД панелей ещё меньше. Но что это за наука, если она не может шагнуть за пределы известного?

Поиск нужной комбинации материалов сначала был проведён с помощью моделирования на компьютере. Затем, на основе полученных данных, был создан прототип, подтвердивший удивительные свойства материала. Образец в качестве активного слоя в кремниевой фотоэлектрической ячейки продемонстрировал среднее фотоэлектрическое поглощение в 80 %, высокую скорость генерации фотовозбуждённых носителей и внешнюю квантовую эффективность (EQE) на беспрецедентном уровне 190 %.

Скачок эффективности материала во многом объясняется его отличительными «состояниями промежуточной зоны», специфическими уровнями энергии, которые расположены в электронной структуре материала таким образом, что делают их идеальными для преобразования солнечной энергии. Эти состояния имеют уровни энергии в пределах оптимальных энергетических диапазонов, в которых материал может эффективно поглощать солнечный свет и производить носители заряда — около 0,78 и 1,26 эВ (электрон-вольт). Кроме того, материал особенно хорошо проявил себя при высоких уровнях поглощения в инфракрасной и видимой областях электромагнитного спектра.

В традиционных солнечных элементах максимальное значение EQE составляет 100 %, что соответствует генерации и сбору одного электрона на каждый поглощенный фотон солнечного света. Новый материал, как и ряд других перспективных материалов, продемонстрировал способность генерировать и собирать более одного электрона из фотонов высокой энергии, что обеспечивает увеличение теоретически возможного КПД панелей до двух и более раз.

Хотя такие материалы с многократным генерированием экситонов еще не получили широкого коммерческого распространения, они обладают потенциалом для значительного повышения эффективности систем солнечной энергетики. В материале, разработанном исследователями Лехайского университета, состояния промежуточной зоны позволяют улавливать энергию фотонов, которая теряется традиционными солнечными элементами, в том числе за счет отражения и выработки тепла.

Исследователи разработали новый материал с использованием «ван-дер-ваальсовых зазоров», атомарно малых промежутков между слоистыми двумерными материалами. Эти промежутки могут удерживать молекулы или ионы, и материаловеды обычно используют их для вставки или «интеркалирования» других элементов для настройки свойств материала.

По сути в этих зазорах различные межмолекулярные силы, определяемые как силы Ван-дер-Ваальса, крепко удерживают нужные молекулы или атомы, как в случае нового материала. В частности, учёные поместили между селенидом германия (GeSe) и сульфидом олова (SnS) атомы меди нулевой валентности.

Поделиться в: